SM in six dimensional warped geometry ${ }^{1}$

Mathew Arun Thomas

Mar Thoma College, Thiruvalla, Kerala

[^0]
Randall-Sundrum Model spare

- $d s^{2}=a^{2}\left(x_{4}\right) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+r_{c}^{2} d x_{4}^{2}$

Randall-Sundrum Model spare

- $d s^{2}=a^{2}\left(x_{4}\right) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+r_{c}^{2} d x_{4}^{2}$
- $0.01<\epsilon=k_{5} / M_{5}<0.1$.
M_{5} is the fundamental scale of the model and $k_{5}=\sqrt{-\frac{\Lambda_{5}}{12 M_{5}^{3}}}$, where Λ_{5} is the bulk cosmological constant.

Randall-Sundrum Model

- $d s^{2}=a^{2}\left(x_{4}\right) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+r_{c}^{2} d x_{4}^{2}$
- $0.01<\epsilon=k_{5} / M_{5}<0.1$.
M_{5} is the fundamental scale of the model and $k_{5}=\sqrt{-\frac{\Lambda_{5}}{12 M_{5}^{3}}}$, where Λ_{5} is the bulk cosmological constant.

Randall-Sundrum Model

- $d s^{2}=a^{2}\left(x_{4}\right) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+r_{c}^{2} d x_{4}^{2}$
- $0.01<\epsilon=k_{5} / M_{5}<0.1$.
M_{5} is the fundamental scale of the model and $k_{5}=\sqrt{-\frac{\Lambda_{5}}{12 M_{5}^{3}}}$, where Λ_{5} is the bulk cosmological constant.

Randall-Sundrum Model

- $d s^{2}=a^{2}\left(x_{4}\right) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+r_{c}^{2} d x_{4}^{2}$
- $0.01<\epsilon=k_{5} / M_{5}<0.1$.
M_{5} is the fundamental scale of the model and $k_{5}=\sqrt{-\frac{\Lambda_{5}}{12 M_{5}^{3}}}$, where Λ_{5} is the bulk cosmological constant.

Randall-Sundrum Model

- $d s^{2}=a^{2}\left(x_{4}\right) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+r_{c}^{2} d x_{4}^{2}$
- $0.01<\epsilon=k_{5} / M_{5}<0.1$.
M_{5} is the fundamental scale of the model and $k_{5}=\sqrt{-\frac{\Lambda_{5}}{12 M_{5}^{3}}}$, where Λ_{5} is the bulk cosmological constant.

Randall-Sundrum Model

- For a high scale $\widetilde{m} \sim \mathcal{O}\left(M_{5}\right)$, the Higgs mass as seen on our brane is

$$
\begin{equation*}
m_{H}=\widetilde{m} e^{-\pi k_{5} r_{c}} . \tag{1}
\end{equation*}
$$

[^1]
Randall-Sundrum Model

- For a high scale $\widetilde{m} \sim \mathcal{O}\left(M_{5}\right)$, the Higgs mass as seen on our brane is

$$
\begin{equation*}
m_{H}=\widetilde{m} e^{-\pi k_{5} r_{c}} . \tag{1}
\end{equation*}
$$

- The KK masses of the tower of gravitons is

$$
\begin{equation*}
m_{n}=x_{n} k_{5} e^{-\pi k_{5} r_{c}} \tag{2}
\end{equation*}
$$

where x_{n} 's are the roots of the Bessel function of order one.
And the coupling of gravitons to $x_{4}=\pi$ brane localized matter given by

$$
\frac{1}{M_{p l}} T_{s m}^{\mu \nu} h_{\mu \nu}^{0}\left(x_{\mu}\right)+\frac{1}{\Lambda_{\pi}} T_{s m}^{\mu \nu} h_{\mu \nu}^{n}\left(x_{\mu}\right)
$$

[^2]
Randall-Sundrum Model

- For a high scale $\widetilde{m} \sim \mathcal{O}\left(M_{5}\right)$, the Higgs mass as seen on our brane is

$$
\begin{equation*}
m_{H}=\widetilde{m} e^{-\pi k_{5} r_{c}} . \tag{1}
\end{equation*}
$$

- The KK masses of the tower of gravitons is

$$
\begin{equation*}
m_{n}=x_{n} k_{5} e^{-\pi k_{5} r_{c}} \tag{2}
\end{equation*}
$$

where x_{n} 's are the roots of the Bessel function of order one.
And the coupling of gravitons to $x_{4}=\pi$ brane localized matter given by

$$
\frac{1}{M_{p l}} T_{s m}^{\mu \nu} h_{\mu \nu}^{0}\left(x_{\mu}\right)+\frac{1}{\Lambda_{\pi}} T_{s m}^{\mu \nu} h_{\mu \nu}^{n}\left(x_{\mu}\right)
$$

- main The ATLAS collaboration ${ }^{2}$ has ruled out a level- 1 KK graviton in the mass range below 1.41 (2.66) TeV for $\frac{k_{5}}{M_{p l}}=0.01$ (0.1).

$$
\begin{equation*}
\frac{m_{1}}{m_{H}}=x_{1} \frac{k_{5}}{M_{5}} \frac{M_{5}}{\widetilde{m}} \tag{3}
\end{equation*}
$$

for $\frac{k_{5}}{M_{p l}}<0.1$, leads to $m_{1}<1 \mathrm{TeV}$ which contradicts the recent lower bound of first RS KK graviton.

[^3]
Model ${ }^{3}, 4$ sare

- $d s_{6}^{2}=b^{2}\left(x_{5}\right)\left[a^{2}\left(x_{4}\right) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+R_{y}^{2} d x_{4}^{2}\right]+r_{z}^{2} d x_{5}^{2}$

[^4]
Model ${ }^{3,4}$

- $d s_{6}^{2}=b^{2}\left(x_{5}\right)\left[a^{2}\left(x_{4}\right) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+R_{y}^{2} d x_{4}^{2}\right]+r_{z}^{2} d x_{5}^{2}$
- $0.0001<\epsilon=\frac{k}{r_{z} M_{6}}<0.1$, where M_{6} is the fundamental scale in six dimensions and $k=r_{z} \sqrt{-\frac{\Lambda_{6}}{10 M_{6}^{4}}}$, where Λ_{6} being the bulk cosmological constant. And $c=\frac{k}{\cosh \left(k \pi+b_{2}\right)} \frac{R_{y}}{r_{z}}$

[^5]
Model ${ }^{3,4}$

- $d s_{6}^{2}=b^{2}\left(x_{5}\right)\left[a^{2}\left(x_{4}\right) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+R_{y}^{2} d x_{4}^{2}\right]+r_{z}^{2} d x_{5}^{2}$
- $0.0001<\epsilon=\frac{k}{r_{z} M_{6}}<0.1$, where M_{6} is the fundamental scale in six dimensions and $k=r_{z} \sqrt{-\frac{\Lambda_{6}}{10 M_{6}^{4}}}$, where Λ_{6} being the bulk cosmological constant. And $c=\frac{k}{\cosh \left(k \pi+b_{2}\right)} \frac{R_{y}}{r_{z}}$

[^6]
Model ${ }^{3,4}$

- $d s_{6}^{2}=b^{2}\left(x_{5}\right)\left[a^{2}\left(x_{4}\right) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+R_{y}^{2} d x_{4}^{2}\right]+r_{z}^{2} d x_{5}^{2}$
- $0.0001<\epsilon=\frac{k}{r_{z} M_{6}}<0.1$, where M_{6} is the fundamental scale in six dimensions and $k=r_{z} \sqrt{-\frac{\Lambda_{6}}{10 M_{6}^{4}}}$, where Λ_{6} being the bulk cosmological constant. And $c=\frac{k}{\cosh \left(k \pi+b_{2}\right)} \frac{R_{y}}{r_{z}}$

[^7]
Model ${ }^{3,4}$

- $d s_{6}^{2}=b^{2}\left(x_{5}\right)\left[a^{2}\left(x_{4}\right) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+R_{y}^{2} d x_{4}^{2}\right]+r_{z}^{2} d x_{5}^{2}$
- $0.0001<\epsilon=\frac{k}{r_{z} M_{6}}<0.1$, where M_{6} is the fundamental scale in six dimensions and $k=r_{z} \sqrt{-\frac{\Lambda_{6}}{10 M_{6}^{4}}}$, where Λ_{6} being the bulk cosmological constant. And $c=\frac{k}{\cosh \left(k \pi+b_{2}\right)} \frac{R_{y}}{r_{z}}$

[^8]- Case 1: spare Choosing $b_{2}=0$ recovers the results of ${ }^{5}$ and we have

$$
\begin{align*}
V_{1}\left(x_{5}\right) & =-V_{2}\left(x_{5}\right)=\frac{8 M^{4} k}{r_{z}} \operatorname{sech}\left(k x_{5}\right) \\
V_{3} & =0 \tag{4}\\
V_{4} & =\frac{8 M^{4} k}{r_{z}} \tanh (k \pi)
\end{align*}
$$

[^9] ${ }^{6}$ M. T. Arun and D. Choudhury, Stabilization of moduli in spacetime with nested warping arXiv: 1606.00642

- Case 1: spare Choosing $b_{2}=0$ recovers the results of ${ }^{5}$ and we have

$$
\begin{align*}
V_{1}\left(x_{5}\right) & =-V_{2}\left(x_{5}\right)=\frac{8 M^{4} k}{r_{z}} \operatorname{sech}\left(k x_{5}\right) \\
V_{3} & =0 \tag{4}\\
V_{4} & =\frac{8 M^{4} k}{r_{z}} \tanh (k \pi)
\end{align*}
$$

- Identifying the SM brane with the one at $x_{4}=\pi, x_{5}=0$, the mass of higgs becomes

$$
m_{h}=\tilde{m} \frac{e^{-c \pi}}{\cosh k \pi}, \tilde{m}=\text { Cutoffscale }=\frac{1}{R_{y}}
$$

[^10]- Case 1: spare Choosing $b_{2}=0$ recovers the results of ${ }^{5}$ and we have

$$
\begin{align*}
V_{1}\left(x_{5}\right) & =-V_{2}\left(x_{5}\right)=\frac{8 M^{4} k}{r_{z}} \operatorname{sech}\left(k x_{5}\right) \\
V_{3} & =0 \tag{4}\\
V_{4} & =\frac{8 M^{4} k}{r_{z}} \tanh (k \pi)
\end{align*}
$$

- Identifying the SM brane with the one at $x_{4}=\pi, x_{5}=0$, the mass of higgs becomes

$$
m_{h}=\tilde{m} \frac{e^{-c \pi}}{\cosh k \pi}, \tilde{m}=\text { Cutoffscale }=\frac{1}{R_{y}}
$$

- For satisfying the mass hierarchy, we need either (i) a large (~ 10) value for k with an infinitesimally small c or (ii) a large (~ 10) value for c with a moderately small k.

[^11]- Case 1: spare Choosing $b_{2}=0$ recovers the results of ${ }^{5}$ and we have

$$
\begin{align*}
V_{1}\left(x_{5}\right) & =-V_{2}\left(x_{5}\right)=\frac{8 M^{4} k}{r_{z}} \operatorname{sech}\left(k x_{5}\right) \\
V_{3} & =0 \tag{4}\\
V_{4} & =\frac{8 M^{4} k}{r_{z}} \tanh (k \pi)
\end{align*}
$$

- Identifying the SM brane with the one at $x_{4}=\pi, x_{5}=0$, the mass of higgs becomes

$$
m_{h}=\tilde{m} \frac{e^{-c \pi}}{\cosh k \pi}, \tilde{m}=\text { Cutoffscale }=\frac{1}{R_{y}}
$$

- For satisfying the mass hierarchy, we need either (i) a large (~ 10) value for k with an infinitesimally small c or (ii) a large (~ 10) value for c with a moderately small k.
- Case 2: spare ${ }^{6}$ In the opposite limit, viz. $b_{2} \rightarrow \infty$

[^12]- Case 1: spare Choosing $b_{2}=0$ recovers the results of ${ }^{5}$ and we have

$$
\begin{align*}
V_{1}\left(x_{5}\right) & =-V_{2}\left(x_{5}\right)=\frac{8 M^{4} k}{r_{z}} \operatorname{sech}\left(k x_{5}\right) \\
V_{3} & =0 \tag{4}\\
V_{4} & =\frac{8 M^{4} k}{r_{z}} \tanh (k \pi)
\end{align*}
$$

- Identifying the SM brane with the one at $x_{4}=\pi, x_{5}=0$, the mass of higgs becomes

$$
m_{h}=\tilde{m} \frac{e^{-c \pi}}{\cosh k \pi}, \tilde{m}=\text { Cutoffscale }=\frac{1}{R_{y}}
$$

- For satisfying the mass hierarchy, we need either (i) a large (~ 10) value for k with an infinitesimally small c or (ii) a large (~ 10) value for c with a moderately small k.
- Case 2: spare ${ }^{6}$ In the opposite limit, viz. $b_{2} \rightarrow \infty$
- With $c \rightarrow 0$ the brane potentials now read

$$
\begin{equation*}
V_{1}=-V_{2} \approx 0, \quad V_{3} \approx \frac{-8 M^{4} k}{r_{z}} \approx-V_{4} \tag{5}
\end{equation*}
$$

And, $V_{3} \approx-V_{4}$ reveals the near vanishing of the cosmological constant induced on the brane.

[^13]- Case 1: (spare Choosing $b_{2}=0$ recovers the results of ${ }^{5}$ and we have

$$
\begin{align*}
V_{1}\left(x_{5}\right) & =-V_{2}\left(x_{5}\right)=\frac{8 M^{4} k}{r_{z}} \operatorname{sech}\left(k x_{5}\right) \\
V_{3} & =0 \tag{4}\\
V_{4} & =\frac{8 M^{4} k}{r_{z}} \tanh (k \pi)
\end{align*}
$$

- Identifying the SM brane with the one at $x_{4}=\pi, x_{5}=0$, the mass of higgs becomes

$$
m_{h}=\tilde{m} \frac{e^{-c \pi}}{\cosh k \pi}, \tilde{m}=\text { Cutoffscale }=\frac{1}{R_{y}}
$$

- For satisfying the mass hierarchy, we need either (i) a large (~ 10) value for k with an infinitesimally small c or (ii) a large (~ 10) value for c with a moderately small k.
- Case 2: spare ${ }^{6}$ In the opposite limit, viz. $b_{2} \rightarrow \infty$
- With $c \rightarrow 0$ the brane potentials now read

$$
\begin{equation*}
V_{1}=-V_{2} \approx 0, \quad V_{3} \approx \frac{-8 M^{4} k}{r_{z}} \approx-V_{4} \tag{5}
\end{equation*}
$$

And, $V_{3} \approx-V_{4}$ reveals the near vanishing of the cosmological constant induced on the brane.

- As for the line element, in this limit,

$$
d s^{2} \approx e^{2 k\left(x_{5}-\pi\right)}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}+R_{y}^{2} d x_{4}^{2}\right)+r_{z}^{2} d x_{5}^{2}
$$

[^14]
Radii Stabilization ${ }^{7}$

- We postulate two scalar fields with one scalar field $\phi_{1}\left(x_{\mu}, x_{4}, x_{5}\right)$, permeating the entire bulk, that would serve to stabilize r_{z}

[^15]
Radii Stabilization ${ }^{7}$

- We postulate two scalar fields with one scalar field $\phi_{1}\left(x_{\mu}, x_{4}, x_{5}\right)$, permeating the entire bulk, that would serve to stabilize r_{z}
- A second field $\phi_{2}\left(x_{\mu}, x_{4}\right)$, introduced (localized) only on the $x_{5}=0$ brane, would stabilize the length (R_{y}) of the brane.

[^16]
Radii Stabilization ${ }^{7}$

- We postulate two scalar fields with one scalar field $\phi_{1}\left(x_{\mu}, x_{4}, x_{5}\right)$, permeating the entire bulk, that would serve to stabilize r_{z}
- A second field $\phi_{2}\left(x_{\mu}, x_{4}\right)$, introduced (localized) only on the $x_{5}=0$ brane, would stabilize the length (R_{y}) of the brane.
- Back-reaction is difficult to work out in Case 1 due to the brane induced cosmological constant ($\tilde{\Omega})$.

[^17]
Radii Stabilization ${ }^{7}$

- We postulate two scalar fields with one scalar field $\phi_{1}\left(x_{\mu}, x_{4}, x_{5}\right)$, permeating the entire bulk, that would serve to stabilize r_{z}
- A second field $\phi_{2}\left(x_{\mu}, x_{4}\right)$, introduced (localized) only on the $x_{5}=0$ brane, would stabilize the length (R_{y}) of the brane.
- Back-reaction is difficult to work out in Case 1 due to the brane induced cosmological constant ($\tilde{\Omega}$).
- We intend to carry out this only for Case 2 , where $\tilde{\Omega} \rightarrow 0$

[^18]
Small k and large $c:$ Case 1

We present $V_{\text {eff }}$ for $\phi_{1}\left(x_{\mu}, x_{4}, x_{5}\right)$ (scalar in the bulk) in a graphical form.

Figure: The effective potential $V_{\text {eff }}(k)$ for different values of the ratio v_{2} / v_{1} of the classical values of the field ϕ on the two constant-x x_{5} branes. The left (right) panels correspond to $\epsilon=0.1(0.01)$.

Figure: The effective potential $V_{\text {eff }}(k)$ for different values of the mass of the bulk scalar ϕ_{1}.

Large k and small c, with $b_{2} \rightarrow \infty$: Case 2 spare

- To simplify the algebra, we will take recourse to case 2. Here we obtain an almost exact solution incorporating the back reaction

Large k and small c, with $b_{2} \rightarrow \infty$: Case 2

- To simplify the algebra, we will take recourse to case 2. Here we obtain an almost exact solution incorporating the back reaction
- Introducing a scalar field ϕ_{1} in the bulk, the entire action is given by

$$
\begin{equation*}
S=\int d^{6} \times \sqrt{-g}\left[M_{6}^{4} R-\frac{1}{2}\left(\partial \phi_{1}\right)^{2}-V\left(\phi_{1}\right)\right] \tag{6}
\end{equation*}
$$

where

$$
V\left(\phi_{1}\right)=V_{\mathrm{bulk}}\left(\phi_{1}\right)+r_{z}^{-1}\left[f_{0}\left(\phi_{1}(0)\right) \delta\left(x_{5}\right)+f_{\pi}\left(\phi_{1}(\pi)\right) \delta\left(x_{5}-\pi\right)\right]
$$

- To simplify the algebra, we will take recourse to case 2. Here we obtain an almost exact solution incorporating the back reaction
- Introducing a scalar field ϕ_{1} in the bulk, the entire action is given by

$$
\begin{equation*}
S=\int d^{6} \times \sqrt{-g}\left[M_{6}^{4} R-\frac{1}{2}\left(\partial \phi_{1}\right)^{2}-V\left(\phi_{1}\right)\right] \tag{6}
\end{equation*}
$$

where

$$
V\left(\phi_{1}\right)=V_{\mathrm{bulk}}\left(\phi_{1}\right)+r_{z}^{-1}\left[f_{0}\left(\phi_{1}(0)\right) \delta\left(x_{5}\right)+f_{\pi}\left(\phi_{1}(\pi)\right) \delta\left(x_{5}-\pi\right)\right]
$$

- It will be easier to solve for the warp factor and scalar field if we parametrize the bulk potential as

$$
\begin{equation*}
V_{\text {bulk }}=\frac{1}{2}\left(\frac{\partial W}{\partial \phi_{1}}\right)^{2}-\frac{5}{2 M_{6}^{4}} W^{2} \tag{7}
\end{equation*}
$$

- To simplify the algebra, we will take recourse to case 2. Here we obtain an almost exact solution incorporating the back reaction
- Introducing a scalar field ϕ_{1} in the bulk, the entire action is given by

$$
\begin{equation*}
S=\int d^{6} \times \sqrt{-g}\left[M_{6}^{4} R-\frac{1}{2}\left(\partial \phi_{1}\right)^{2}-V\left(\phi_{1}\right)\right] \tag{6}
\end{equation*}
$$

where

$$
V\left(\phi_{1}\right)=V_{\mathrm{bulk}}\left(\phi_{1}\right)+r_{z}^{-1}\left[f_{0}\left(\phi_{1}(0)\right) \delta\left(x_{5}\right)+f_{\pi}\left(\phi_{1}(\pi)\right) \delta\left(x_{5}-\pi\right)\right]
$$

- It will be easier to solve for the warp factor and scalar field if we parametrize the bulk potential as

$$
\begin{equation*}
V_{\mathrm{bulk}}=\frac{1}{2}\left(\frac{\partial W}{\partial \phi_{1}}\right)^{2}-\frac{5}{2 M_{6}^{4}} W^{2} \tag{7}
\end{equation*}
$$

- with $W(\phi)$ satisfying the junction conditions

$$
\left.W\right|_{\alpha-\epsilon} ^{\alpha+\epsilon}=\left.\frac{1}{2} \frac{1}{r_{z}} f_{\alpha}\left(\phi_{1}(\alpha)\right) \quad \frac{\partial W}{\partial \phi_{1}}\right|_{\alpha-\epsilon} ^{\alpha+\epsilon}=-\frac{1}{2} \frac{\partial f_{\alpha}\left(\phi_{1}(\alpha)\right.}{\partial \phi}
$$

An explicit example

- Choosing $W\left(\phi_{1}\right)$ to be of the form

$$
W\left(\phi_{1}\right)=2 M_{6}^{5} \epsilon-\frac{1}{4} u M_{6} \phi_{1}^{2}
$$

where $u \lesssim 0.1$ is a constant.

An explicit example

- Choosing $W\left(\phi_{1}\right)$ to be of the form

$$
W\left(\phi_{1}\right)=2 M_{6}^{5} \epsilon-\frac{1}{4} u M_{6} \phi_{1}^{2}
$$

where $u \lesssim 0.1$ is a constant.

- And the solutions for the scalar field and the warpfactor are

$$
\begin{align*}
\phi_{1}\left(x_{5}\right) & =\phi_{0} \exp \left(u M_{6} r_{z}\left|x_{5}\right|\right) \\
A\left(x_{5}\right) & =k\left|x_{5}\right|-\frac{v_{0}^{4}}{8 M_{6}^{4}} \exp \left(2 u M_{6} r_{z}\left|x_{5}\right|\right) \tag{8}
\end{align*}
$$

Note that the warp factor has changed from the simple exponential form that it had in the absence of the scalar field.

An explicit example

- Choosing $W\left(\phi_{1}\right)$ to be of the form

$$
W\left(\phi_{1}\right)=2 M_{6}^{5} \epsilon-\frac{1}{4} u M_{6} \phi_{1}^{2}
$$

where $u \lesssim 0.1$ is a constant.

- And the solutions for the scalar field and the warpfactor are

$$
\begin{align*}
\phi_{1}\left(x_{5}\right) & =\phi_{0} \exp \left(u M_{6} r_{z}\left|x_{5}\right|\right) \\
A\left(x_{5}\right) & =k\left|x_{5}\right|-\frac{v_{0}^{4}}{8 M_{6}^{4}} \exp \left(2 u M_{6} r_{z}\left|x_{5}\right|\right) \tag{8}
\end{align*}
$$

Note that the warp factor has changed from the simple exponential form that it had in the absence of the scalar field.

- The stability of r_{z} could be addressed along with the boundary-localized potential that

$$
\begin{equation*}
r_{z}=\frac{1}{u \pi M_{6}} \ln \frac{v_{\pi}^{2}}{v_{0}^{2}} \tag{9}
\end{equation*}
$$

stabilizing x_{4}

- A second scalar ϕ_{2} (of mass $m_{2} \lesssim M_{6}$) confined to the 4 -brane at $x_{5}=\pi$ would lead to a stabilized R_{y}^{-1}, and, consequently, to a moderate R_{y} / r_{z} and a small c (as desired).

stabilizing x_{4}

- A second scalar ϕ_{2} (of mass $m_{2} \lesssim M_{6}$) confined to the 4 -brane at $x_{5}=\pi$ would lead to a stabilized R_{y}^{-1}, and, consequently, to a moderate R_{y} / r_{z} and a small c (as desired).
- A more interesting option would be to locate ϕ_{2} on the $x_{5}=0$ brane instead. With bulk mass of ϕ_{2} now suffering a large warping (due to $b\left(x_{5}\right)$), the stabilized value for R_{y}^{-1} would, naturally, be in the TeV range.

stabilizing x_{4}

- A second scalar ϕ_{2} (of mass $m_{2} \lesssim M_{6}$) confined to the 4 -brane at $x_{5}=\pi$ would lead to a stabilized R_{y}^{-1}, and, consequently, to a moderate R_{y} / r_{z} and a small c (as desired).
- A more interesting option would be to locate ϕ_{2} on the $x_{5}=0$ brane instead. With bulk mass of ϕ_{2} now suffering a large warping (due to $b\left(x_{5}\right)$), the stabilized value for R_{y}^{-1} would, naturally, be in the TeV range.
- With SM fields allowed to percolate into the x_{4} direction, this setup would provide a dynamical justification for the scale in a Universal Extra Dimension-like scenario.

stabilizing x_{4}

- A second scalar ϕ_{2} (of mass $m_{2} \lesssim M_{6}$) confined to the 4 -brane at $x_{5}=\pi$ would lead to a stabilized R_{y}^{-1}, and, consequently, to a moderate R_{y} / r_{z} and a small c (as desired).
- A more interesting option would be to locate ϕ_{2} on the $x_{5}=0$ brane instead. With bulk mass of ϕ_{2} now suffering a large warping (due to $b\left(x_{5}\right)$), the stabilized value for R_{y}^{-1} would, naturally, be in the TeV range.
- With SM fields allowed to percolate into the x_{4} direction, this setup would provide a dynamical justification for the scale in a Universal Extra Dimension-like scenario.
- A UED scenario with slightly broken parity symmetry.

stabilizing x_{4}

- A second scalar ϕ_{2} (of mass $m_{2} \lesssim M_{6}$) confined to the 4-brane at $x_{5}=\pi$ would lead to a stabilized R_{y}^{-1}, and, consequently, to a moderate R_{y} / r_{z} and a small c (as desired).
- A more interesting option would be to locate ϕ_{2} on the $x_{5}=0$ brane instead. With bulk mass of ϕ_{2} now suffering a large warping (due to $b\left(x_{5}\right)$), the stabilized value for R_{y}^{-1} would, naturally, be in the TeV range.
- With SM fields allowed to percolate into the x_{4} direction, this setup would provide a dynamical justification for the scale in a Universal Extra Dimension-like scenario.
- A UED scenario with slightly broken parity symmetry.
- From here onwards we focus only on $\tilde{\Omega} \neq 0$ or Case 1 with
i) small k, large c
ii) small c, large k.
with Bessel function solutions in x_{4} direction and Legendre function solutions in x_{5} direction.

stabilizing x_{4}

- A second scalar ϕ_{2} (of mass $m_{2} \lesssim M_{6}$) confined to the 4 -brane at $x_{5}=\pi$ would lead to a stabilized R_{y}^{-1}, and, consequently, to a moderate R_{y} / r_{z} and a small c (as desired).
- A more interesting option would be to locate ϕ_{2} on the $x_{5}=0$ brane instead. With bulk mass of ϕ_{2} now suffering a large warping (due to $b\left(x_{5}\right)$), the stabilized value for R_{y}^{-1} would, naturally, be in the TeV range.
- With SM fields allowed to percolate into the x_{4} direction, this setup would provide a dynamical justification for the scale in a Universal Extra Dimension-like scenario.
- A UED scenario with slightly broken parity symmetry.
- From here onwards we focus only on $\tilde{\Omega} \neq 0$ or Case 1 with
i) small k, large c
ii) small c, large k.
with Bessel function solutions in x_{4} direction and Legendre function solutions in x_{5} direction.
- Case 2, though interesting, but will have similar results to Randall-Sundrum with Bessel function solutions in the x_{5} direction.

Gravitons in Warped Scenario

- To obtain the KK modes, one needs to consider the fluctuations of the metric,

$$
g_{\mu \nu}=\bar{g}_{\mu \nu}+\Delta_{\mu \nu}
$$

where $\bar{g}_{\mu \nu}$ denotes the background metric.

[^19] (2015)

Gravitons in Warped Scenario

- To obtain the KK modes, one needs to consider the fluctuations of the metric,

$$
g_{\mu \nu}=\bar{g}_{\mu \nu}+\Delta_{\mu \nu}
$$

where $\bar{g}_{\mu \nu}$ denotes the background metric.

- We focus our attention on the relevant (four-dimensional) tensor fluctuations $\Delta_{\mu \kappa}$ parametrized as

$$
\Delta_{\mu \kappa}=b^{2}\left(x_{5}\right) a^{2}\left(x_{4}\right) \frac{1}{\sqrt{R_{y} r_{z}}} \sum_{n, p} h_{\mu \nu}^{(n, p)}\left(x_{\mu}\right) \psi_{n p}\left(x_{4}\right) \chi_{p}\left(x_{5}\right) .
$$

[^20]
Gravitons in Warped Scenario

- To obtain the KK modes, one needs to consider the fluctuations of the metric,

$$
g_{\mu \nu}=\bar{g}_{\mu \nu}+\Delta_{\mu \nu}
$$

where $\bar{g}_{\mu \nu}$ denotes the background metric.

- We focus our attention on the relevant (four-dimensional) tensor fluctuations $\Delta_{\mu \kappa}$ parametrized as

$$
\Delta_{\mu \kappa}=b^{2}\left(x_{5}\right) a^{2}\left(x_{4}\right) \frac{1}{\sqrt{R_{y} r_{z}}} \sum_{n, p} h_{\mu \nu}^{(n, p)}\left(x_{\mu}\right) \psi_{n p}\left(x_{4}\right) \chi_{p}\left(x_{5}\right) .
$$

- The interaction term of a graviton with any brane field is given by

$$
\begin{equation*}
L_{\mathrm{int}}=C_{n p} T^{\mu \nu} h_{\mu \nu}^{n, p}\left(x_{\mu}, x_{4}=\pi, x_{5}=0\right), \tag{10}
\end{equation*}
$$

where $T^{\mu \nu}$ is the energy-momentum tensor of the field.

[^21]
Couplings with brane fields

spare

- Small k (large c)

$$
k=0.05, \frac{R_{y}}{r_{z}}=211, w=6.14 \times 10^{-15}
$$

(n, p)	$m_{n p}(\mathrm{TeV})$	$C_{n p} \times 10^{3}$ $\left(\mathrm{TeV}^{-1}\right)$
$(1,0)$	5.07	8.04
$(2,0)$	9.29	8.04
$(3,0)$	13.5	8.04
$(0,1)$	30.2	-24.1
$(1,1)$	37.1	16.4
$(2,1)$	42.7	-14.7

$k=0.3$	$\frac{R_{y}}{r_{z}}=49.3, w=1.81 \times 10^{-14}$	
(n, p)	$m_{n p}(\mathrm{TeV})$	$C_{n p} \times 10^{3}$ $\left(\mathrm{TeV}^{-1}\right)$
$(1,0)$	7.07	1.87
$(2,0)$	12.9	-1.87
$(3,0)$	18.8	1.87
$(0,1)$	11.3	-4.74
$(1,1)$	17.8	4.13
$(2,1)$	24.0	-3.99

Table: Sample spectra for the small k case for a particular bulk curvature $(\epsilon=0.0775)$.

Large k (small c)

$k=8.2, \quad \frac{R_{y}}{r_{z}}=1.56, \quad \epsilon=0.00675$

$w=1.3 \times 10^{-11}$		
(n, p)	$m_{n p}(\mathrm{TeV})$	$C_{n p}\left(\mathrm{TeV}^{-1}\right)$
$(0,1)$	3.61	-0.881
$(0,2)$	7.40	0.745
$(0,3)$	10.8	-0.720
$(0,4)$	14.2	0.710

$$
k=8.5, \quad \frac{R_{y}}{r_{z}}=1.56, \quad \epsilon=0.0111
$$

$w=5.06 \times 10^{-12}$		
(n, p)	$m_{n p}(\mathrm{TeV})$	$C_{n p}\left(\mathrm{TeV}^{-1}\right)$
$(0,1)$	3.74	-3.62
$(0,2)$	7.66	3.06
$(0,3)$	11.2	-2.96
$(0,4)$	14.7	2.92

Table: Sample spectra for the large k case.

Small k (large c)

Figure: (left)The mass m_{10} for the first graviton mode as a function of ϵ for a fixed k. The parameter $\frac{R_{y}}{r_{z}}$ has been constrained to satisfy $w R_{y}^{-1}=m_{h}$. (right) Contour plots in the $\left(\epsilon, \frac{R_{y}}{r_{z}}\right.$) plane for fixed values of k. The curves are constrained to satisfy $w R_{y}^{-1}=m_{h}$

Large k (small c)

Figure: Left panel: Contour plots in the $\left(\epsilon, \frac{R_{y}}{r_{z}}\right)$ plane for fixed values of k. Right panel: The mass m_{01} for the first graviton mode as a function of ϵ

Bulk Standard model fields ${ }^{9}$

Fermions in the bulk: Six-dimensions with nested warping

- The Dirac Lagrangian in the warped geometry is, then, given by

$$
\begin{equation*}
\mathcal{L}_{\text {Dirac }}=i \bar{\Psi}_{+} \Gamma^{a} E_{a}^{M}\left(\partial_{M}+w_{M}^{b c}\left[\Gamma_{b}, \Gamma_{c}\right]\right) \Psi_{+}, \tag{11}
\end{equation*}
$$

where the sechsbeins e_{M}^{a} satisfy the conditions $e_{M}^{a} e_{N}^{b} g^{M N}=\eta_{a b}, E_{M}^{a} E_{N}^{b} \eta^{a b}=g_{M N}$, leading to

$$
e_{\mu}^{a}=a\left(x_{4}\right) b\left(x_{5}\right) \delta_{\mu}^{a}, \quad e_{4}^{a}=R_{y} b\left(x_{5}\right) \delta_{4}^{a}, \quad e_{5}^{a}=r_{z} \delta_{4}^{a} .
$$

[^22]
Bulk Standard model fields ${ }^{9}$

Fermions in the bulk: Six-dimensions with nested warping

- The Dirac Lagrangian in the warped geometry is, then, given by

$$
\begin{equation*}
\mathcal{L}_{\text {Dirac }}=i \bar{\Psi}_{+} \Gamma^{a} E_{a}^{M}\left(\partial_{M}+w_{M}^{b c}\left[\Gamma_{b}, \Gamma_{c}\right]\right) \Psi_{+}, \tag{11}
\end{equation*}
$$

where the sechsbeins e_{M}^{a} satisfy the conditions $e_{M}^{a} e_{N}^{b} g^{M N}=\eta_{a b}, E_{M}^{a} E_{N}^{b} \eta^{a b}=g_{M N}$, leading to

$$
e_{\mu}^{a}=a\left(x_{4}\right) b\left(x_{5}\right) \delta_{\mu}^{a}, \quad e_{4}^{a}=R_{y} b\left(x_{5}\right) \delta_{4}^{a}, \quad e_{5}^{a}=r_{z} \delta_{4}^{a} .
$$

- and the only nontrivial components of the spin connections are given by

$$
\omega_{b c 4}=\frac{R_{y}}{r_{z}} \dot{b} \delta_{[b}^{5} \delta_{c]}^{4}, \quad \omega_{b c \mu}=\eta_{\mu \nu}\left(\frac{a^{\prime}}{R_{y}} \delta_{[b}^{\nu} \delta_{c]}^{4}+\frac{a \dot{b}}{r_{z}} \delta_{[b}^{\nu} \delta_{c]}^{5}\right)
$$

where primes (dots) denote derivatives with respect to $x_{4}\left(x_{5}\right)$.

[^23]
Bulk Standard model fields ${ }^{9}$

Fermions in the bulk: Six-dimensions with nested warping

- The Dirac Lagrangian in the warped geometry is, then, given by

$$
\begin{equation*}
\mathcal{L}_{\text {Dirac }}=i \bar{\Psi}_{+} \Gamma^{a} E_{a}^{M}\left(\partial_{M}+w_{M}^{b c}\left[\Gamma_{b}, \Gamma_{c}\right]\right) \Psi_{+}, \tag{11}
\end{equation*}
$$

where the sechsbeins e_{M}^{a} satisfy the conditions $e_{M}^{a} e_{N}^{b} g^{M N}=\eta_{a b}, E_{M}^{a} E_{N}^{b} \eta^{a b}=g_{M N}$, leading to

$$
e_{\mu}^{a}=a\left(x_{4}\right) b\left(x_{5}\right) \delta_{\mu}^{a}, \quad e_{4}^{a}=R_{y} b\left(x_{5}\right) \delta_{4}^{a}, \quad e_{5}^{a}=r_{z} \delta_{4}^{a} .
$$

- and the only nontrivial components of the spin connections are given by

$$
\omega_{b c 4}=\frac{R_{y}}{r_{z}} \dot{b} \delta_{[b}^{5} \delta_{c]}^{4}, \quad \omega_{b c \mu}=\eta_{\mu \nu}\left(\frac{a^{\prime}}{R_{y}} \delta_{[b}^{\nu} \delta_{c]}^{4}+\frac{a \dot{b}}{r_{z}} \delta_{[b}^{\nu} \delta_{c]}^{5}\right)
$$

where primes (dots) denote derivatives with respect to $x_{4}\left(x_{5}\right)$.

- The solutions are in terms of Bessel and Legendre functions

[^24]
Gauge bosons in the bulk

- The gauge boson lagrangian is given by

$$
\begin{equation*}
\mathcal{L}=\frac{-1}{4} \sqrt{-g} F_{M N} F^{M N}+\mathcal{L}_{g f} . \tag{12}
\end{equation*}
$$

Gauge bosons in the bulk

- The gauge boson lagrangian is given by

$$
\begin{equation*}
\mathcal{L}=\frac{-1}{4} \sqrt{-g} F_{M N} F^{M N}+\mathcal{L}_{g f} . \tag{12}
\end{equation*}
$$

- The quadratic term for the vector field is now given by

$$
\begin{equation*}
\mathcal{L}_{A_{\mu}}=\frac{-R_{y} r_{z}}{2}\left[b A_{\kappa}\left(-\partial^{2} \eta^{\kappa \lambda}+\partial^{\lambda} \partial^{\kappa}\right) A_{\lambda}+\frac{a^{2} b}{R_{y}^{2}}\left(\partial_{4} A_{\kappa}\right)\left(\partial_{4} A^{\kappa}\right)+\frac{a^{2} b^{3}}{r_{z}^{2}}\left(\partial_{5} A_{\kappa}\right)\left(\partial_{5} A^{\kappa}\right)\right], \tag{13}
\end{equation*}
$$

- The gauge boson lagrangian is given by

$$
\begin{equation*}
\mathcal{L}=\frac{-1}{4} \sqrt{-g} F_{M N} F^{M N}+\mathcal{L}_{g f} . \tag{12}
\end{equation*}
$$

- The quadratic term for the vector field is now given by

$$
\begin{equation*}
\mathcal{L}_{A_{\mu}}=\frac{-R_{y} r_{z}}{2}\left[b A_{\kappa}\left(-\partial^{2} \eta^{\kappa \lambda}+\partial^{\lambda} \partial^{\kappa}\right) A_{\lambda}+\frac{a^{2} b}{R_{y}^{2}}\left(\partial_{4} A_{\kappa}\right)\left(\partial_{4} A^{\kappa}\right)+\frac{a^{2} b^{3}}{r_{z}^{2}}\left(\partial_{5} A_{\kappa}\right)\left(\partial_{5} A^{\kappa}\right)\right]^{1+1}, \tag{13}
\end{equation*}
$$

- while for the adjoint scalars, with field redefinitions $\tilde{A}_{4} \equiv \sqrt{\frac{r_{z}}{R_{y}}} A_{4}$ and $\tilde{A}_{5} \equiv \sqrt{\frac{R_{y}}{r_{z}}} A_{5}$, it is

$$
\begin{aligned}
& \mathcal{L}_{\tilde{A}_{4}}=\frac{-1}{2}\left[a^{2} b\left(\partial_{\mu} \tilde{A}_{4}\right)\left(\partial^{\mu} \tilde{A}_{4}\right)+\frac{a^{4} b^{3}}{r_{z}^{2}}\left(\partial_{5} \tilde{A}_{4}\right)^{2}+\frac{1}{R_{y}^{2} b}\left\{\partial_{4}\left(a^{2} b \tilde{A}_{4}\right)\right\}^{2}\right] \\
& \mathcal{L}_{\tilde{A}_{5}}=\frac{-1}{2}\left[a^{2} b^{3}\left(\partial_{\mu} \tilde{A}_{5}\right)\left(\partial^{\mu} \tilde{A}_{5}\right)+\frac{a^{4} b^{3}}{R_{y}^{2}}\left(\partial_{4} \tilde{A}_{5}\right)^{2}+\frac{1}{r_{z}^{2} b}\left\{\partial_{5}\left(a^{2} b^{3} \tilde{A}_{5}\right)\right\}^{2}\right]
\end{aligned}
$$

and reminiscent of the action for a scalar field, after neglecting a small mixing term.

Interaction : Gauge-Fermion

- Writing the interaction term in its component form, we have

$$
\begin{equation*}
\mathcal{L} \ni \sum_{\left\{n_{i}, p_{i}\right\}} g_{\left\{n_{i}, p_{i}\right\}}^{V, f} \bar{\psi}_{l / r}^{n_{1}, p_{1}} \gamma^{\mu} \psi_{l / r}^{n_{2}, p_{2}} A_{\mu}^{n_{3}, p_{3}}, \tag{14}
\end{equation*}
$$

Interaction: Gauge-Fermion

- Writing the interaction term in its component form, we have

$$
\begin{equation*}
\mathcal{L} \ni \sum_{\left\{n_{i}, p_{i}\right\}} g_{\left\{n_{i}, p_{i}\right\}}^{V, f} \bar{\psi}_{l / r}^{n_{1}, p_{1}} \gamma^{\mu} \psi_{l / r}^{n_{2}, p_{2}} A_{\mu}^{n_{3}, p_{3}}, \tag{14}
\end{equation*}
$$

- with the four dimensional charges being given by

$$
g_{\left\{n_{i}, p_{i}\right\}}^{V, f}=\frac{g_{Y M}}{\sqrt{R_{y} r_{z}}} \int_{0}^{\pi} d x_{4} \int_{-\pi}^{\pi} d x_{5} a^{3} b^{4} \mathcal{F}_{1 / r}^{n_{1}, p_{1}}\left(x_{4}, x_{5}\right) \mathcal{F}_{1 / r}^{n_{2}, p_{2}}\left(x_{4}, x_{5}\right) \eta_{n_{3}, p_{3}}\left(x_{4}\right) \chi_{p_{3}}\left(x_{5}\right) .
$$

- Writing the interaction term in its component form, we have

$$
\begin{equation*}
\mathcal{L} \ni \sum_{\left\{n_{i}, p_{i}\right\}} g_{\left\{n_{i}, p_{i}\right\}}^{V, f} \bar{\psi}_{1 / r}^{n_{1}, p_{1}} \gamma^{\mu} \psi_{1 / r}^{n_{2}, p_{2}} A_{\mu}^{n_{3}, p_{3}}, \tag{14}
\end{equation*}
$$

- with the four dimensional charges being given by

$$
g_{\left\{n_{i}, p_{i}\right\}}^{V, f}=\frac{g_{Y M}}{\sqrt{R_{y} r_{z}}} \int_{0}^{\pi} d x_{4} \int_{-\pi}^{\pi} d x_{5} a^{3} b^{4} \mathcal{F}_{1 / r}^{n_{1}, p_{1}}\left(x_{4}, x_{5}\right) \mathcal{F}_{1 / r}^{n_{2}, p_{2}}\left(x_{4}, x_{5}\right) \eta_{n_{3}, p_{3}}\left(x_{4}\right) \chi_{p_{3}}\left(x_{5}\right) .
$$

- Some examples of gauge boson spectra and their couplings to the lowest modes of the fermion current are given in tables below. With the scaling $C_{n p}$ of zero mode gauge boson coupling with the fermions defined as

$$
C_{n p} \equiv \frac{g_{\{0,0, n\},\{0,0, p\}}^{V, f}}{g_{\{0,0,0\},\{0,0,0\}}^{V, f}}
$$

$$
k=0.3, \frac{R_{y}}{r_{z}}=49, w=1.82 \times 10^{-14} \quad k=0.56, \frac{R_{y}}{r_{z}}=50.4, w=4.48 \times 10^{-14}
$$

(n, p)	$m_{n p}(\mathrm{TeV})$	$C_{n p}$
$(1,0)$	4.47	3.87×10^{0}
$(2,0)$	10.2	4.98×10^{-1}
$(0,1)$	10.1	7.89×10^{-1}
$(1,1)$	17.0	3.03×10^{-1}

(n, p)	$m_{n p}(\mathrm{TeV})$	$C_{n p}$
$(1,0)$	8.55	3.77×10^{0}
$(2,0)$	19.6	4.93×10^{-1}
$(0,1)$	14.6	2.35×10^{0}
$(1,1)$	26.9	7.19×10^{-1}

Table: Sample spectra for the small k case for a particular bulk curvature $(\epsilon=0.0775)$ with R_{y} set to satisfy the mass hierarchy.

Symmetry breaking and Phenomenological consequences ${ }^{10}$

Higgs

- To solve the hierarchy problem, in large $c($ small $k)$ regime, we need to confine the Higgs to a brane located at $\left(x_{4}=\pi\right)$. We chose the Higgs Lagrangian of the form

$$
\mathcal{L}_{h}=\delta\left(x_{4}-\pi\right) \sqrt{-g_{5}}\left(g^{\mu \nu} D_{\mu} \phi\left(x^{\bar{M}}\right)^{\dagger} D_{\nu} \phi\left(x^{\bar{M}}\right)+\left(\frac{R_{y}}{r_{z}}\right)^{-2} g^{55}\left|D_{5} \phi\left(x^{\bar{M}}\right)\right|^{2}+V(\phi)\right),
$$

[^25] consequences, JHEP 1604, 133 (2016)

Symmetry breaking and Phenomenological consequences ${ }^{10}$

Higgs

- To solve the hierarchy problem, in large $c($ small $k)$ regime, we need to confine the Higgs to a brane located at $\left(x_{4}=\pi\right)$. We chose the Higgs Lagrangian of the form

$$
\mathcal{L}_{h}=\delta\left(x_{4}-\pi\right) \sqrt{-g_{5}}\left(g^{\mu \nu} D_{\mu} \phi\left(x^{\bar{M}}\right)^{\dagger} D_{\nu} \phi\left(x^{\bar{M}}\right)+\left(\frac{R_{y}}{r_{z}}\right)^{-2} g^{55}\left|D_{5} \phi\left(x^{\bar{M}}\right)\right|^{2}+V(\phi)\right),
$$

- For simplifying the gauge solutions, we need to choose $\left\langle\phi\left(x_{5}\right)\right\rangle \propto v / \sqrt{b\left(x_{5}\right)}$ with v being the vacuum expectation value. This could be achieved by a potential of the form

$$
V(\phi)=\frac{k^{2}}{R_{y}^{2}}\left[\frac{5 \operatorname{sech}^{2} k \pi}{24\left(v / \sqrt{r_{z}}\right)^{4}} \phi^{6}-\frac{7}{8} \phi^{2}\right] .
$$

[^26]
Symmetry breaking and Phenomenological consequences ${ }^{10}$

Higgs

- To solve the hierarchy problem, in large $c($ small $k)$ regime, we need to confine the Higgs to a brane located at $\left(x_{4}=\pi\right)$. We chose the Higgs Lagrangian of the form

$$
\mathcal{L}_{h}=\delta\left(x_{4}-\pi\right) \sqrt{-g_{5}}\left(g^{\mu \nu} D_{\mu} \phi\left(x^{\bar{M}}\right)^{\dagger} D_{\nu} \phi\left(x^{\bar{M}}\right)+\left(\frac{R_{y}}{r_{z}}\right)^{-2} g^{55}\left|D_{5} \phi\left(x^{\bar{M}}\right)\right|^{2}+V(\phi)\right),
$$

- For simplifying the gauge solutions, we need to choose $\left\langle\phi\left(x_{5}\right)\right\rangle \propto v / \sqrt{b\left(x_{5}\right)}$ with v being the vacuum expectation value. This could be achieved by a potential of the form

$$
V(\phi)=\frac{k^{2}}{R_{y}^{2}}\left[\frac{5 \operatorname{sech}^{2} k \pi}{24\left(v / \sqrt{r_{z}}\right)^{4}} \phi^{6}-\frac{7}{8} \phi^{2}\right] .
$$

- Identifying the lowest state with the recently discovered Higgs boson, we get

$$
m_{h}^{2}=m_{0}^{2}=\left(\frac{25}{4} \operatorname{sech}^{2} k \pi+\gamma_{0}\right) \frac{k^{2}}{R_{y}^{2}} e^{-2 c \pi} .
$$

[^27]
Symmetry breaking and Phenomenological consequences ${ }^{10}$

Higgs

- To solve the hierarchy problem, in large $c($ small $k)$ regime, we need to confine the Higgs to a brane located at $\left(x_{4}=\pi\right)$. We chose the Higgs Lagrangian of the form

$$
\mathcal{L}_{h}=\delta\left(x_{4}-\pi\right) \sqrt{-g_{5}}\left(g^{\mu \nu} D_{\mu} \phi\left(x^{\bar{M}}\right)^{\dagger} D_{\nu} \phi\left(x^{\bar{M}}\right)+\left(\frac{R_{y}}{r_{z}}\right)^{-2} g^{55}\left|D_{5} \phi\left(x^{\bar{M}}\right)\right|^{2}+V(\phi)\right),
$$

- For simplifying the gauge solutions, we need to choose $\left\langle\phi\left(x_{5}\right)\right\rangle \propto v / \sqrt{b\left(x_{5}\right)}$ with v being the vacuum expectation value. This could be achieved by a potential of the form

$$
V(\phi)=\frac{k^{2}}{R_{y}^{2}}\left[\frac{5 \operatorname{sech}^{2} k \pi}{24\left(v / \sqrt{r_{z}}\right)^{4}} \phi^{6}-\frac{7}{8} \phi^{2}\right] .
$$

- Identifying the lowest state with the recently discovered Higgs boson, we get

$$
m_{h}^{2}=m_{0}^{2}=\left(\frac{25}{4} \operatorname{sech}^{2} k \pi+\gamma_{0}\right) \frac{k^{2}}{R_{y}^{2}} e^{-2 c \pi}
$$

- Parameterizing the vev v as $v=\frac{\lambda_{v}}{\sqrt{2 \pi}} R_{y}^{-1}=\frac{\lambda_{v}}{\sqrt{2 \pi}}\left(\frac{R_{y}}{r_{z}}\right)^{-1} r_{z}^{-1}$, where $\lambda_{v} \lesssim 1$, we have

$$
\lambda_{v}=\sqrt{2 \pi\left(\frac{25}{4} \operatorname{sech}^{2} k \pi+\gamma_{0}\right)} \frac{k}{g} \frac{M_{w}}{m_{h}} .
$$

[^28]- The dependence of the zero mode Higgs mass on k starting from is shown in the figure below

- The dependence of the zero mode Higgs mass on k starting from is shown in the figure below

- As the figure clearly shows, the Higgs potential formulation we followed, allows for only $k \lesssim 0.5$

Corrections to the Higgs potential and modifications to the spectrum

- The potential in the previous slide represented the tree-level potential, and it would be subject to quantum corrections. Perturbation to ϕ_{cl} of the form

$$
\phi_{\mathrm{cl}}^{\text {new }}=\frac{v}{\sqrt{r_{z} b\left(x_{5}\right)}}\left[1+\beta_{n} b^{n}\left(x_{5}\right)\right]
$$

where n is an as yet undetermined power and β_{n} is a small parameter.

Corrections to the Higgs potential and modifications to the spectrum

- The potential in the previous slide represented the tree-level potential, and it would be subject to quantum corrections. Perturbation to ϕ_{cl} of the form

$$
\phi_{\mathrm{cl}}^{\mathrm{new}}=\frac{v}{\sqrt{r_{z} b\left(x_{5}\right)}}\left[1+\beta_{n} b^{n}\left(x_{5}\right)\right]
$$

where n is an as yet undetermined power and β_{n} is a small parameter.

- It is easy to see that the tree level potential gets modified and for $n=-3$ (for simplicity)

$$
\delta V=\frac{-4 k^{2}}{3 R_{y}^{2}} \frac{v}{2 r_{z}^{2}} \beta \operatorname{sech}^{2}(k \pi)\left(\frac{r_{z} \phi^{2}}{v^{2}}\right)^{6}
$$

where $\beta \equiv \beta_{-3} \leq 0$ so as to ensure a potential bounded

Corrections to the Higgs potential and modifications to the spectrum

- The potential in the previous slide represented the tree-level potential, and it would be subject to quantum corrections. Perturbation to ϕ_{cl} of the form

$$
\phi_{\mathrm{cl}}^{\mathrm{new}}=\frac{v}{\sqrt{r_{z} b\left(x_{5}\right)}}\left[1+\beta_{n} b^{n}\left(x_{5}\right)\right]
$$

where n is an as yet undetermined power and β_{n} is a small parameter.

- It is easy to see that the tree level potential gets modified and for $n=-3$ (for simplicity)

$$
\delta V=\frac{-4 k^{2}}{3 R_{y}^{2}} \frac{v}{2 r_{z}^{2}} \beta \operatorname{sech}^{2}(k \pi)\left(\frac{r_{z} \phi^{2}}{v^{2}}\right)^{6}
$$

where $\beta \equiv \beta_{-3} \leq 0$ so as to ensure a potential bounded

- With this, the lowest eigenvalue is shifted to

$$
m_{0, \text { new }}^{2}=\frac{k^{2} e^{-2 c \pi}}{R_{y}^{2}}\left[\left(\frac{25}{4} \operatorname{sech}^{2} k \pi+\gamma_{p}\right)+\beta\left(25-\frac{28}{\lambda_{v}} \frac{R_{y}}{r_{z}}\right) X_{k}\right]
$$

where X_{k} is the matrix element of the perturbation Hamiltonian ($k=0.5$ (0.6) we have $\left.X_{k}=0.51(0.3)\right)$.

Corrections to the Higgs potential and modifications to the spectrum

- The potential in the previous slide represented the tree-level potential, and it would be subject to quantum corrections. Perturbation to ϕ_{cl} of the form

$$
\phi_{\mathrm{cl}}^{\mathrm{new}}=\frac{v}{\sqrt{r_{z} b\left(x_{5}\right)}}\left[1+\beta_{n} b^{n}\left(x_{5}\right)\right]
$$

where n is an as yet undetermined power and β_{n} is a small parameter.

- It is easy to see that the tree level potential gets modified and for $n=-3$ (for simplicity)

$$
\delta V=\frac{-4 k^{2}}{3 R_{y}^{2}} \frac{v}{2 r_{z}^{2}} \beta \operatorname{sech}^{2}(k \pi)\left(\frac{r_{z} \phi^{2}}{v^{2}}\right)^{6}
$$

where $\beta \equiv \beta_{-3} \leq 0$ so as to ensure a potential bounded

- With this, the lowest eigenvalue is shifted to

$$
m_{0, \text { new }}^{2}=\frac{k^{2} e^{-2 c \pi}}{R_{y}^{2}}\left[\left(\frac{25}{4} \operatorname{sech}^{2} k \pi+\gamma_{p}\right)+\beta\left(25-\frac{28}{\lambda_{v}} \frac{R_{y}}{r_{z}}\right) X_{k}\right]
$$

where X_{k} is the matrix element of the perturbation Hamiltonian ($k=0.5$ (0.6) we have $\left.X_{k}=0.51(0.3)\right)$.

- Clearly for $\lambda_{v}<1$, a negative β raises the Higgs mass considerably, thereby allowing for a wider range of k without risking tachyonic modes.
- In the new description the figure below shows that a rather wide range of λ_{V} becomes allowed once even small perturbations are switched on for $k=0.6$ and $50<\frac{R_{y}}{r_{z}}<53$.

- In the new description the figure below shows that a rather wide range of λ_{V} becomes allowed once even small perturbations are switched on for $k=0.6$ and $50<\frac{R_{y}}{r_{z}}<53$.

- A sample spectrum (for $\epsilon=0.1$)

$$
k=0.3, \frac{R_{y}}{r_{z}}=49.0, w=2.69 \times 10^{-14} \quad k=0.4, \frac{R_{y}}{r_{z}}=46.5, w=4.33 \times 10^{-14}
$$

(p)	γ_{p}	$m_{p}(\mathrm{TeV})$			(p)	γ_{p}	$m_{p}(\mathrm{TeV})$
(0)	-1.16419	0.121		$\lambda_{v}=1.99, \beta=0$	(0)	-1.029	0.120
(1)	4.932	0.260			(1)	1.59	0.262
(2)	24.742	0.489			(2)	9.536	0.484
$k=0.5, \frac{R_{y}}{r_{z}}=46, w=3.2 \times 10^{-13}$							
		(p)	γ_{p}	$m_{p}(\mathrm{TeV})$			
			-0.9914	0.118	$\lambda_{v}=$.323, $\beta=$	-7×10^{-6}
		(0)	0.556	1.19			
		(2)	3.997	2.13			

Phenomenological constraints : Effective Lagrangian Setup

- Localized Higgs deforms not only the mass spectrum, but also the wavefunctions. It affects the lowest (zero-) mode as follows

$$
\eta_{0,0}^{V} \rightarrow \eta_{0,0}^{V_{r}} \approx \frac{1}{\sqrt{\pi}}\left[1+\frac{M_{V}^{2} \rho^{2}}{4}\left(e^{2 c\left(x_{4}-\pi\right)}-1-2 c x_{4} e^{2 c\left(x_{4}-\pi\right)}+2 c \pi\right)\right] .
$$

where $\rho=\frac{R_{y}}{c} e^{c \pi}$. Where V will be replaced by W or Z depending whether its $W^{ \pm}$boson or Z boson.

Phenomenological constraints : Effective Lagrangian Setup

- Localized Higgs deforms not only the mass spectrum, but also the wavefunctions. It affects the lowest (zero-) mode as follows

$$
\eta_{0,0}^{V} \rightarrow \eta_{0,0}^{V_{r}} \approx \frac{1}{\sqrt{\pi}}\left[1+\frac{M_{V}^{2} \rho^{2}}{4}\left(e^{2 c\left(x_{4}-\pi\right)}-1-2 c x_{4} e^{2 c\left(x_{4}-\pi\right)}+2 c \pi\right)\right] .
$$

where $\rho=\frac{R_{y}}{c} e^{c \pi}$. Where V will be replaced by W or Z depending whether its $W^{ \pm}$boson or Z boson.

- This effect for the massive gauge bosons is suppressed by a factor $v^{2} / M_{(1,0)}^{2}$.

Phenomenological constraints : Effective Lagrangian Setup

- Localized Higgs deforms not only the mass spectrum, but also the wavefunctions. It affects the lowest (zero-) mode as follows

$$
\eta_{0,0}^{V} \rightarrow \eta_{0,0}^{V_{r}} \approx \frac{1}{\sqrt{\pi}}\left[1+\frac{M_{V}^{2} \rho^{2}}{4}\left(e^{2 c\left(x_{4}-\pi\right)}-1-2 c x_{4} e^{2 c\left(x_{4}-\pi\right)}+2 c \pi\right)\right] .
$$

where $\rho=\frac{R_{y}}{c} e^{c \pi}$. Where V will be replaced by W or Z depending whether its $W^{ \pm}$boson or Z boson.

- This effect for the massive gauge bosons is suppressed by a factor $v^{2} / M_{(1,0)}^{2}$.
- The relevant part of the renormalized Lagrangian can be written as

$$
\begin{align*}
-\mathcal{L}_{\text {eff }} & =\frac{\mathcal{Z}_{\gamma}}{4} F_{\mu \nu} F^{\mu \nu}+\frac{\mathcal{Z}_{W}}{2} W_{\mu \nu}^{+} W^{-\mu \nu}+\frac{\mathcal{Z}_{Z}}{4} Z_{\mu \nu} Z^{\mu \nu} \\
& +\left[M_{w}^{2}+\Pi_{w w}(0)\right] W_{\mu} W^{\mu}+\frac{1}{2}\left[M_{z}^{2}+\Pi_{z z}(0)\right] Z_{\mu} Z^{\mu} \\
& \equiv \frac{1+A}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1+B}{2} W_{\mu \nu}^{+} W^{-\mu \nu}+\frac{1+C}{4} Z_{\mu \nu} Z^{\mu \nu}+\frac{G}{2} F_{\mu \nu} Z^{\mu \nu} \tag{15}\\
& +(1+w) M_{W}^{2} W_{\mu} W^{\mu}+\frac{1+z}{2} M_{z}^{2} Z_{\mu} Z^{\mu}
\end{align*}
$$

where we have deliberately introduced the parameters A, B, C, G, w, z for future ease.

The Oblique Parameters

- This immediately leads to expressions for the oblique parameters ${ }^{11}$

$$
\delta S \approx-4 \pi \frac{M_{w}^{2} \rho^{2} c \pi}{g^{2}}=-4 \pi \zeta, \quad \delta T \approx \frac{-\pi}{2 \cos ^{2} \theta_{w}} \frac{M_{w}^{2} \rho^{2} c \pi}{g^{2}}=\frac{-\pi}{2 \cos ^{2} \theta_{w}} \zeta, \quad \delta U=0
$$

with $\zeta=\frac{M_{w}^{2} \rho^{2} c \pi}{g^{2}}$

[^29]
The Oblique Parameters

- This immediately leads to expressions for the oblique parameters ${ }^{11}$

$$
\delta S \approx-4 \pi \frac{M_{w}^{2} \rho^{2} c \pi}{g^{2}}=-4 \pi \zeta, \quad \delta T \approx \frac{-\pi}{2 \cos ^{2} \theta_{w}} \frac{M_{w}^{2} \rho^{2} c \pi}{g^{2}}=\frac{-\pi}{2 \cos ^{2} \theta_{w}} \zeta, \quad \delta U=0
$$

with $\zeta=\frac{M_{w}^{2} \rho^{2} c \pi}{g^{2}}$

- For charged current processes, at low energies, is parametrized by G_{f} which now reads

$$
G_{f} \approx G_{f}^{S M}\left[1+\left(\frac{g^{(1,0)} M_{W}}{g M_{W(1,0)}}\right)^{2}\right]=G_{f}^{S M}[1+V], \quad V \equiv \frac{\zeta}{\pi c}\left(\frac{g^{(1,0)}}{x_{1,0}}\right)^{2}
$$

[^30]
The Oblique Parameters

- This immediately leads to expressions for the oblique parameters ${ }^{11}$

$$
\delta S \approx-4 \pi \frac{M_{w}^{2} \rho^{2} c \pi}{g^{2}}=-4 \pi \zeta, \quad \delta T \approx \frac{-\pi}{2 \cos ^{2} \theta_{w}} \frac{M_{w}^{2} \rho^{2} c \pi}{g^{2}}=\frac{-\pi}{2 \cos ^{2} \theta_{w}} \zeta, \quad \delta U=0 .
$$

with $\zeta=\frac{M_{w}^{2} \rho^{2} c \pi}{g^{2}}$

- For charged current processes, at low energies, is parametrized by G_{f} which now reads

$$
G_{f} \approx G_{f}^{S M}\left[1+\left(\frac{g^{(1,0)} M_{W}}{g M_{W(1,0)}}\right)^{2}\right]=G_{f}^{S M}[1+V], \quad V \equiv \frac{\zeta}{\pi c}\left(\frac{g^{(1,0)}}{x_{1,0}}\right)^{2}
$$

- Experiments demand $V<0.0013$ at 95% C.L.

$$
k=0.5, \alpha=48.367, w=7.081 \times 10^{-14}
$$

(n, p)	$m_{n p}(\mathrm{TeV})$	$C_{n p}$	V
$(1,0)$	9.5	3.81	1.0×10^{-3}
$(2,0)$	21.9	0.49	3.34×10^{-6}
$(0,1)$	17.0	0.20	9.21×10^{-7}
$(1,1)$	30.9	0.06	2.84×10^{-8}

Table: Sample spectrum for the small k case for a particular bulk curvature $(\epsilon=0.1)$ and with $\lambda_{v}=1.5$. $C_{n p}$ is defined as the ratio of $g^{(n, p)}$ and g.

[^31]
Confronting Electroweak Precision Measurements

- We now construct a $\Delta \chi^{2}$-test (the shift in the χ^{2} from the SM value of ≈ 27.5) for this model ${ }^{12}$ comparing the expressions with the experimental results.

Figure: The shift in the χ^{2} as a function of ϵ for various values of the parameter λ_{v}. The panel refers to $k=0.4$.

Note that even a very moderate hierarchy ($\lambda_{v} \lesssim 0.3$) renders the model quite consistent with low-energy data.

[^32]
Confronting Electroweak Precision Measurements

- We now construct a $\Delta \chi^{2}$-test (the shift in the χ^{2} from the SM value of ≈ 27.5) for this model ${ }^{12}$ comparing the expressions with the experimental results.

Figure: The shift in the χ^{2} as a function of ϵ for various values of the parameter λ_{v}. The panel refers to $k=0.4$.

Note that even a very moderate hierarchy ($\lambda_{v} \lesssim 0.3$) renders the model quite consistent with low-energy data.

- This means the gauge boson mass without custodially protected bulk is $\sim 27 \mathrm{TeV}$

[^33]
Confronting Electroweak Precision Measurements

- We now construct a $\Delta \chi^{2}$-test (the shift in the χ^{2} from the $S M$ value of ≈ 27.5) for this model ${ }^{12}$ comparing the expressions with the experimental results.

Figure: The shift in the χ^{2} as a function of ϵ for various values of the parameter λ_{v}. The panel refers to $k=0.4$.

Note that even a very moderate hierarchy ($\lambda_{v} \lesssim 0.3$) renders the model quite consistent with low-energy data.

- This means the gauge boson mass without custodially protected bulk is $\sim 27 \mathrm{TeV}$
- But this will not bring in a little hierarchy unlike the 5D RS.

[^34]
Beta function

- The renormalization group evolution of the gauge couplings (which is logarithmic in the case of the SM) now turns power-law as shown below. This can be understood most easily in terms of the KK-reduction, whereby the logarithmic contributions from each of the individual KK-excitations sum up to give a power-law behaviour

Figure: Gauge coupling constant evolution for $k=0.5, \epsilon=0.1$. The three panels correspond to different λ_{v} values.

Thank You

[^0]: ${ }^{1}$ Under the supervision of Prof. Debajyoti Choudhury

[^1]: ${ }^{2} \mathrm{G}$. Aad et al. [ATLAS Collaboration], "Search for high-mass diphoton resonances in pp collisions at $\sqrt{s}=8 \mathrm{TeV}$ with the ATLAS detector", Phys. Rev. D 92, no. 3, 032004 (2015)

[^2]: ${ }^{2} \mathrm{G}$. Aad et al. [ATLAS Collaboration], "Search for high-mass diphoton resonances in pp collisions at $\sqrt{s}=8 \mathrm{TeV}$ with the ATLAS detector", Phys. Rev. D 92, no. 3, 032004 (2015)

[^3]: ${ }^{2} \mathrm{G}$. Aad et al. [ATLAS Collaboration], "Search for high-mass diphoton resonances in pp collisions at $\sqrt{s}=8 \mathrm{TeV}$ with the ATLAS detector", Phys. Rev. D 92, no. 3, 032004 (2015)

[^4]: ${ }^{3}$ D. Choudhury and S. SenGupta, Living on the edge in a spacetime with multiple warping,Phys.Rev.D76:064030,2007 ${ }^{4}$ M. T. Arun and D. Choudhury, Stabilization of moduli in spacetime with nested warping, arXiv:1606.00642

[^5]: ${ }^{3}$ D. Choudhury and S. SenGupta, Living on the edge in a spacetime with multiple warping,Phys.Rev.D76:064030,2007 ${ }^{4}$ M. T. Arun and D. Choudhury, Stabilization of moduli in spacetime with nested warping, arXiv:1606.00642

[^6]: ${ }^{3}$ D. Choudhury and S. SenGupta, Living on the edge in a spacetime with multiple warping, Phys.Rev.D76:064030,2007 ${ }^{4}$ M. T. Arun and D. Choudhury, Stabilization of moduli in spacetime with nested warping, arXiv:1606.00642

[^7]: ${ }^{3}$ D. Choudhury and S. SenGupta, Living on the edge in a spacetime with multiple warping,Phys.Rev.D76:064030,2007 ${ }^{4}$ M. T. Arun and D. Choudhury, Stabilization of moduli in spacetime with nested warping, arXiv:1606.00642

[^8]: ${ }^{3}$ D. Choudhury and S. SenGupta, Living on the edge in a spacetime with multiple warping,Phys.Rev.D76:064030,2007 ${ }^{4}$ M. T. Arun and D. Choudhury, Stabilization of moduli in spacetime with nested warping, arXiv:1606.00642

[^9]: ${ }^{5}$ D. Choudhury and S. SenGupta, Living on the edge in a spacetime with multiple warping, Phys.Rev.D76:064030,2007

[^10]: ${ }^{5}$ D. Choudhury and S. SenGupta,Living on the edge in a spacetime with multiple warping, Phys.Rev.D76:064030,2007
 ${ }^{6}$ M. T. Arun and D. Choudhury, Stabilization of moduli in spacetime with nested warping arXiv:1606.00642

[^11]: ${ }^{5}$ D. Choudhury and S. SenGupta, Living on the edge in a spacetime with multiple warping, Phys.Rev.D76:064030,2007
 ${ }^{6}$ M. T. Arun and D. Choudhury, Stabilization of moduli in spacetime with nested warping arXiv:1606.00642

[^12]: ${ }^{5}$ D. Choudhury and S. SenGupta, Living on the edge in a spacetime with multiple warping,Phys.Rev.D76:064030,2007
 ${ }^{6}$ M. T. Arun and D. Choudhury, Stabilization of moduli in spacetime with nested warping arXiv:1606.00642

[^13]: ${ }^{5}$ D. Choudhury and S. SenGupta, Living on the edge in a spacetime with multiple warping, Phys.Rev.D76:064030,2007 ${ }^{6}$ M. T. Arun and D. Choudhury, Stabilization of moduli in spacetime with nested warping arXiv:1606.00642

[^14]: ${ }^{5}$ D. Choudhury and S. SenGupta, Living on the edge in a spacetime with multiple warping,Phys.Rev.D76:064030,2007 ${ }^{6}$ M. T. Arun and D. Choudhury, Stabilization of moduli in spacetime with nested warping arXiv:1606.00642

[^15]: ${ }^{7}$ M. T. Arun and D. Choudhury, Stabilization of moduli in spacetime with nested warping arXiv:1606.00642

[^16]: ${ }^{7}$ M. T. Arun and D. Choudhury, Stabilization of moduli in spacetime with nested warping arXiv: 1606.00642

[^17]: ${ }^{7}$ M. T. Arun and D. Choudhury, Stabilization of moduli in spacetime with nested warping arXiv: 1606.00642

[^18]: ${ }^{7}$ M. T. Arun and D. Choudhury, Stabilization of moduli in spacetime with nested warping arXiv:1606.00642

[^19]: ${ }^{8}$ M. T. Arun, D. Choudhury, A. Das and S. SenGupta, Graviton modes in multiply warped geometry Phys. Lett. B 746, 266

[^20]: ${ }^{8}$ M. T. Arun, D. Choudhury, A. Das and S. SenGupta, Graviton modes in multiply warped geometry Phys. Lett. B 746, 266 (2015)

[^21]: ${ }^{8}$ M. T. Arun, D. Choudhury, A. Das and S. SenGupta, Graviton modes in multiply warped geometry Phys. Lett. B 746, 266 (2015)

[^22]: ${ }^{9}$ M. T. Arun and D. Choudhury, Bulk gauge and matter fields in nested warping: I. the formalism, JHEP 1509, 202 (2015), arXiv:1501.06118 [hep-th]

[^23]: ${ }^{9}$ M. T. Arun and D. Choudhury, Bulk gauge and matter fields in nested warping: I. the formalism, JHEP 1509, 202 (2015), arXiv:1501.06118 [hep-th]

[^24]: ${ }^{9}$ M. T. Arun and D. Choudhury, Bulk gauge and matter fields in nested warping: I. the formalism, JHEP 1509, 202 (2015), arXiv:1501.06118 [hep-th]

[^25]: ${ }^{10}$ M. T. Arun and D. Choudhury, Bulk gauge and matter fields in nested warping: II. Symmetry Breaking and phenomenological

[^26]: ${ }^{10}$ M. T. Arun and D. Choudhury, Bulk gauge and matter fields in nested warping: II. Symmetry Breaking and phenomenological consequences, JHEP 1604, 133 (2016)

[^27]: ${ }^{10}$ M. T. Arun and D. Choudhury, Bulk gauge and matter fields in nested warping: II. Symmetry Breaking and phenomenological consequences, JHEP 1604, 133 (2016)

[^28]: ${ }^{10}$ M. T. Arun and D. Choudhury, Bulk gauge and matter fields in nested warping: II. Symmetry Breaking and phenomenological consequences, JHEP 1604, 133 (2016)

[^29]: ${ }^{11}$ A detailed fit to the data has been performed in K. A. Olive et al. [Particle Data Group Collaboration], Review of Particle Physics, Chin. Phys. C 38, 090001 (2014), and we use their central values (derived by fixing $\mathrm{U}=0$, as is the case here and as is normal for most beyond-SM fits) of $S=0.00 \pm 0.08$ and $T=0.05 \pm 0.07$.

[^30]: ${ }^{11}$ A detailed fit to the data has been performed in K. A. Olive et al. [Particle Data Group Collaboration], Review of Particle Physics, Chin. Phys. C 38, 090001 (2014), and we use their central values (derived by fixing $\mathrm{U}=0$, as is the case here and as is normal for most beyond-SM fits) of $S=0.00 \pm 0.08$ and $T=0.05 \pm 0.07$.

[^31]: ${ }^{11}$ A detailed fit to the data has been performed in K. A. Olive et al. [Particle Data Group Collaboration], Review of Particle Physics, Chin. Phys. C 38, 090001 (2014), and we use their central values (derived by fixing $\mathrm{U}=0$, as is the case here and as is normal for most beyond-SM fits) of $S=0.00 \pm 0.08$ and $T=0.05 \pm 0.07$.

[^32]: ${ }^{12}$ C. Csaki, J. Erlich and J. Terning, The Effective Lagrangian in the Randall-Sundrum model and electroweak physics, Phys. Rev. D 66, 064021 (2002), drew up expressions for 22 such observables in terms of the their SM values, the oblique parameters S, T, U and V.

[^33]: ${ }^{12}$ C. Csaki, J. Erlich and J. Terning, The Effective Lagrangian in the Randall-Sundrum model and electroweak physics, Phys. Rev. D 66, 064021 (2002), drew up expressions for 22 such observables in terms of the their SM values, the oblique parameters S, T, U and V.

[^34]: ${ }^{12}$ C. Csaki, J. Erlich and J. Terning, The Effective Lagrangian in the Randall-Sundrum model and electroweak physics, Phys. Rev. D 66, 064021 (2002), drew up expressions for 22 such observables in terms of the their SM values, the oblique parameters S, T, U and V.

